Kytos has embarked on an exciting new venture in the field of horticulture in Vietnam. We have joined with Fresh Studio® to delve into the fascinating world of microbiomes in lettuce cultivation using Nutrient Film Technique (NFT) systems. 🥬💦
This collaborative effort will enable Fresh Studio® and KYTOS to gain a precise and comprehensive understanding of the intricate relationship between the microbiome and crop health, leading to the development of microbiome-based management recommendations. 🔬 🌿
The utilization of digital microbiome management solutions and advanced platforms holds great promise for the future of sustainable farming practices. 🌱🌍
🔥The future of eco-friendly and productive horticulture is here!
The microbial health of the rearing water and biofilter of Recirculating aquaculture systems (RAS) is crucial for maintaining optimal water quality for land-based fish farms. Ammonia, a toxic component for fish, is metabolized by specialized organisms called Ammonia Oxidizing Bacteria and Archaea (AOB/AOA), while organic substrates are degraded by heterotrophic bacteria. The production of toxic hydrogen sulfide, as well as off flavour compounds such as geosmin, have been traced back to a microbial origin. As a result, the close interaction of the rearing water with the fish requires RAS operators to now get a firm grip on the microbial health of their systems.
Facilitation of KYTOS services in Norway’s RAS market
KYTOS and RASLab have begun collaborating to offer commercial services to manage and optimize the microbial health and performance of RAS systems. KYTOS offers a unique quantitative overview of the microbiome in the water and biofilter through their RASCheck/RASScreen/RASManage service programs that compliment RASLab’s RASseq services where next generation sequencing identifies all of the bacteria in the biofilter.
By undertaking these combined analyses, it becomes possible to understand how management decisions affect the biofilter in terms of performance and resilience as well as the total microbial environment of the RAS system. Using this information, bespoke services can be offered for optimizing system and fish performance. Starting this August, RASLab customers can benefit from these combined.
Our RASseq services are complemented by the KYTOS toolbox. This collaboration fits in nicely with our provisions of microbial and lab support services to the industry and our research customers and is yet another part of how we drive for “innovating the future of aquaculture.
Mark Powell, CEO of RASLab
Comprehensive Microbial Health Assessments for RAS management
Both companies have their specialization in state-of-the-art microbiome technologies and RAS. KYTOS uses big data and artificial intelligence to reduce aquaculture’s unpredictability by creating practical tools that help make informed management decisions. Its services leverageflow cytometry, which is the most performant single-cell technology available today.
With RASLab, we have identified a great commercial and R&D synergy for our RAS services. This collaboration aids us in fulfilling our core mission of making microbiome management tools smarter and more accessible to the industry.
Ruben Props, co-founder and CEO of KYTOS
Complementary to KYTOS’s functional approach, RASLab’s RASseq service targets the genetic information of the microbiome to obtain detailed information about the bacterial community. Previous work has already shown significant differences in nitrifier communities between RAS systems operating under different salinities.
RASLab’s unique and modular infrastructure enables the development and testing of new microbial health indicators. With 12 independent small scale RAS systems and a stock of 3 (fully sequenced) biofilter options (freshwater, brackish water and full seawater) RASLab can offer studies of the microbial environment from 5 to 30 °C for any norwegian aquaculture species. Combining with KYTOS and RASlab’s RAS and Lab services, this powerful combination of microbiological tools for monitoring both fish health and RAS system performance will enable both companies to test new microbial health indicators for RAS.
A Full Service for RAS Farmers and Technology Providers
KYTOS will work closely with RASLab to service farm customers via routine full service programs, which means that bespoke sampling programs will be implemented, and all sampling materials and sample logistics are arranged. The KytoVial sampling system enables biosecure microbiome sampling of the farm. The KYTOS A.I. engine will process the microbiome data to provide clients with rapid results of up to 10 microbiome health indicators. Digital reports are accessible online and via its secure KytoApp mobile application. Ongoing contract research at RASLab being executed will also be available to be supported by KYTOS technology. It is now possible for customers to choose to use the KYTOS technology for monitoring the microbial environments of the fish and RAS systems during research activity that is being carried out at RASLab.
Please tell us something more about your background (education, interests, …)?
In my country farmers are not always able to spend a lot of money in analysing various parameters to make culture more sustainable as a result they suffer with financial loss in long run. Sometimes the technologies are not available there as well. Providing affordable techniques and spreading appropriate knowledge related to the culture system would be the most useful thing to them to flourish this sector sustainably. This gap I want to fill up by collaborating and by enriching my own knowledge and experience gradually.
I have completed my bachelor from ‘Faculty of Fisheries’ at Bangladesh Agriculture University and from the same University I have completed my master’s degree in mid of 2019. For my thesis there I have worked with the bacterial diseases of two popular farmed fish in my country. While working I got to know the vast impact of microbiome in the culture system more practically. Health management of aquatic organism was a field of interest to mine which make me apply for another master’s degree ‘Health Management in Aquaculture’ where I have been selected as Erasmus Mundus awardee of 2022-2023 cohort.
Why did an internship at KYTOS appeal to you?
As a part of my curriculum in AquaH I was supposed to look for an internship in my second semester. I wanted to make a connection between the focus of my current degree and my previous work with microbiome. At this point, KYTOS is the best suited to my desire as it works with different aspect of microbiome in the aquatic environment to ensure the better health of the aquatic organism.
What are you looking to learn from the internship?
I would like to learn the application of different technologies in the aquaculture field to control or stimulate the microbial community present in the culture system.
Now that Tết has passed and the Year of the Cat is upon us, farmers and hatcheries in Vietnam are ready to resume their activities!
KYTOS is your local partner to help you make informed microbiome management decisions. Our service programs offer you:
🧪 Biosecure sampling using KytoVials 🏠 Local hub for rapid sample processing ☁️ Digital reporting workflow (mobile/web) 🕒 Timely results 📈 Service programs fit for any farm and hatchery 🙋 Local support team to educate and train our clients
Join us in our mission to make microbiome management 📈 Smarter, 🏠 Easier, and 🧪 Accessible.
👉 If you have any questions, please don’t hesitate to contact hai@kytos.com.vn (Vietnam), info@kytos.be (general inquiries).
2022 has been an important and fruitful year for KYTOS.
Looking back, here are some of our highlights of the past year:
🧪 59,425 samples were processed via our microbiome management platform
🧪 Configured two data factories for high-throughput processing of customer samples
✨ Established a strategic partnership with I&V Bio to bring KYTOS technology closer to the shrimp industry
🧑 Customers in > 10 countries and projects for > 10 aquaculture species
🧑Expanded our team across two countries with 5 talented people
☁️Launched our digital tools (KytoApp) to both mobile & browser
📈 Expanded our toolset with new indicators for Oomycetes, Bacteria and Algae populations
📈Launched the collaborative Seatru initiative with Aqua Pharma Group to provide welfare below water for the Shrimp industry
📈 Developed several precision management applications for key accounts (probiotics, biofilter performance, …)
We can’t wait to see what’s in store for 2023, stay tuned for some exciting product launches in the near future. Together, we will make microbiome management smarter, accessible, and more effective.
We are happy to welcome Tara Baele to our growing KYTOS team! Tara is an expert in targeted single-cell molecular methods and nitrogen cycle management. She holds a degree in Industrial Engineering from Ghent University.
Tara will be working on next-gen functional health metrics for both shrimp, RAS and hydroponic systems and will be running the day-to-day laboratory operations for our clients.
Truyền is a recently graduated Bachelor of Science in Aquaculture from Nha Trang University. She will be working closely with Ngoc Minh Ngan Bui to perform all kinds of microbiome analyses for our clients.
Over the summer, KYTOS is hosting two interns: Ms. Thị Bao Châu Võ and Mr. Kevin Waweru Mwangi. Kevin and Chau are both enrolled in the Master of Science in Aquaculture at the Faculty of Bioscience Engineering at Ghent University. Our two interns will be working independently on research projects to help aquaculture farmers use agrobiological and biocontrol products, such as pro- and prebiotics, more effectively. Chau will be working on product applications in freshwater recirculating aquaculture systems. Kevin will be researching product applications for open salt water cultivation systems.
➡️ Meet Châu and Kevin!
Kevin Waweru Mwangi
Kevin Waweru Mwangi, UGent intern helping us develop new product applications for KYTOS technology in shrimp aquaculture systems.
Please tell us something more about your background (education, interests, …)?
I studied BSc in animal health and production which propelled me to be interested in the world of animal health, and specifically microbiology and antimicrobial resistance. In 2020, I got an industrial internship at the international livestock research institute (ILRI) working on antimicrobial resistance in zoonotic bacteria. Currently, I am doing a 2-year Master of Science in Aquaculture at Ghent University under the VLIR-UOS scholarship.
Why did an internship at KYTOS appeal to you?
Kytos is a powerhouse in matters of using novel and cutting-edge technology to analyze the microbiomes in the aquatic environment, thus playing a huge role in improving aquatic health and contributing to One Health. Kytos´s primary goal is to use scientific research to help aquaculture farmers to have healthy production systems. This is in line with my goal of using scientific research to make the world a better place.
What are you looking to learn from the internship?
I am looking forward to gaining knowledge and skills in microbiome analysis from aquaculture production systems. This includes gaining experience in single-cell and molecular analysis of the microbiomes in aquaculture production systems and improving on designing and planning experiments. Moreover, being able to evaluate the outcome of the use of biocontrol products, analyze and interpret microbiome data in the context of the farmers’ objectives. Am also looking forward to being under the umbrella of the mentorship of the Kytos team.
Any achievement you want to reach?
Get more insights about the microbiome in aquaculture and seek to understand ”what makes them tick”. Help Kytos achieve its goal of safeguarding and improving microbiome health. After the internship, I would like to be competent in the analysis of data which includes making figures, statistics and most importantly result reporting.
Farmers have been waiting for decades on microbiome management technologies, where do you see yourself having the biggest impact?
With this internship, I seek to understand how biocontrol products affect the microbiomes in the aquatic environment and I will contribute to helping farmers have well-performing aquaculture systems. The well-detailed research that I will be conducting at Kytos will contribute to the knowledge of the production of open salt water cultivation systems.
Thị Bao Châu Võ
Can you tell us something more about your background?
I come from Vietnam; the country is on the list of the top largest aquaculture product producers in the world. I have a solid aquaculture background with a bachelor’s degree in Aquatic Resources Management from the International University – Vietnam National University; and I am pursuing a master’s degree in Aquaculture at Ghent University thanks to the support from The Flemish Interuniversity Council (VLIR-OUS) ‘scholarship. I am interested in researching aquatic diseases, microbiology, pathogenic mechanisms and the relationship between microbial pathogens and hosts. I believe this understanding allows the disease to be prevented and better aquatic’s animal health management.
Why did the internship appeal to you?
I have some experience working in the academic workplaces; however, all these experiences are for basic research. With the prospect that I can apply my studies to real life, this internship is the chance for me to learn how the research turns out to be successful applications in practice. I am really fascinated by KYTOS’s idea that assessing microbial data to predict the aquaculture systems’ health in order to assist farming. The internship also brings me knowledge about how advanced technology is used in the aquaculture industry.
Thị Bao Châu Võ, UGent intern helping us develop new product applications for KYTOS technology in freshwater recirculating aquaculture systems.
What are you looking to learn from the internship?
The internship provides me with the chance to boarder my understanding of microbial community monitoring. I also want to improve my data interpretation skills and discover the variety of advantageous techniques applied in aquatic research. Moreover, all experts have their own stories to tell, so I am looking forward to listening and learning from KYTOS’s experts.
Any particular achievement you want to reach?
My goal is to develop environmental-friendly treatments in order to manage the good health of the animals and control the overuse of antibiotics in aquaculture. I believe the more experiences I gain today, the higher chances of success I get in the future.
Farmers have been waiting for decades on microbiome management technologies, where do you see yourself have the biggest impact?
After this internship and my study, I will have gotten experience working as a researcher and know more about the microbiome management overall. It is undeniable that there are several studies and technologies invented and developed every year, however, there are gaps such as academic knowledge, species diversity and feasibility still exist between the research and reality. I see myself not only as the one who works in the research field but also as the one who supports the farmers understanding.
With crop losses of billions of dollars annually, microbial diseases pose a large threat for the hydroponics sector. As most farmers know, the recirculation water in a hydroponics installation is one of the main sources responsible for the introduction and spread (so-called “vector”) of phytopathogens. Hydroponics systems therefore require almost constant water management to control microbial disease pressures on the crops. To be able to manage these systems KYTOS helps farmers and other stakeholders:
Identify the water sources where there is a low microbial health situations
Connect the health deviations with climate and other operational factors
Assess the risk for a disease outbreak
Take action via the right treatments
Unfortunately, information regarding the microbiome health within hydroponics greenhouses is incredibly scarce. This makes it difficult for farmers, but also solution providers to know what’s really happening in their greenhouse(s). KYTOS partnered with Tomato Masters to finally shed a first light on the microbial health status within tomato greenhouses. We are proud to share our results with the world.
Our Sampling Approach for Three Greenhouses
Each greenhouse is unique and we thus had to optimize our sampling scheme for each one of them. The first two sampled greenhouses consisted of four tap sections (“kraanvakken“) with individual irrigation systems. The samples were taken from the main tap of the greenhouse (“hoofdkraan“) and from the distribution line at each of the four tap sections (“druppelleiding“). The third greenhouse had a different tap section layout and there we sampled the 204 individual drains (“goten“) that are used to collect drainwater from the plant substrate.
Sampling with our KytoVials is so easy and quick, the team was able to collect over 220 biosecure samples in < 1 hour!
Schematic illustration of the layout of the sampled greenhouses at Tomato Masters. A) Layout of the greenhouses at which the main tap and distribution line in each of the tap sections was sampled. B) Layout of the greenhouse where individual drains were sampled.
Findings
Tap Sections House Different Microbiomes
Our supervised learning toolbox KytoFlow was able to pick up some important observations (Figure 1). The average bacterial load in the main tap and irrigation water of the tap sections were almost identical with only a maximum difference of 3x between the tap sections.
Our recently developed algorithm for the detection of common water molds such as oomycetes spores (e.g. Pythium, Phytophthora) revealed that the lowest load was observed at the main tap while larger differences in oomycete load were found across the tap sections (up to 100x).
In simple terms: the microbial water quality strongly deteriorated over the tap sections specifically due to the accumulation of water mold spores. Tap sections 3 and 4 were found to be of higher risk for greenhouse #1, and sections 2 and 3 for greenhouse #2.
Fun fact: A big advantage of our Oomycetes algorithm is that it is able to identify the zoospores, which are the motile phenotypes of these water molds, and pose the highest risk for disease migration.
Figure 1. Bacterial load and oomycetes risk indicators measured in the main tap and individual tap sections of the two first greenhouses.
Drain Microbiomes Differ Across Tap Sections
Greenhouses are known to have hotspots for microbe-related problems as well as differences in crop performances between production rows. The drains in a greenhouse carry the microbiome from the input water to the plant and substrate microbiomes. The microbiome can thus change considerably due to differences in plant exudates, climate, or farm management. For Tomato Masters, we completely screened the microbial water quality of all production rows (Figure 2).
Bacterial and Water Mold Pressures Can Differ Strongly Between Drains
10 % of all drains could be classified as hotspots (based on IQR of 1.5).
Every tap section has hotspots for water molds and bacterial growth.
Tap sections #1 (orange) and #2 (red) were the cleanest for water molds, but there were many drains with over 1000-fold higher spore loads.
Tap sections #2 (blue) and #4 (teal) had elevated spore loads for nearly all drains.
Diversity and Microbiome Types are Dependent on Tap Section
The microbial diversity, which is a proxy for a healthy and resilient microbiome, showed a wavy pattern throughout the greenhouse.
Drains with the highest diversity were located at the beginning and end of the tap sections.
We identified four different types of microbiome in the drains. Tap sections 3 and 4 were strongly enriched in other microbiome types than the clean drains (1 and 2). More than 50 % of all drains had a type 3 or type 4 microbiome.
Figure 2. Bacterial load, oomycetes risk indicator, diversity and microbiome types measured in 204 individual, consecutive gutters of a greenhouse. Each label color corresponds to a tap section in the greenhouse. The black lines are smoothed lowess fits and highlight the trends in the data.
Take Home
Microbial hotspots exist in greenhouses and they can be found both within individual tap sections, as well as concentrated within specific tap sections.
There are gradual gradients in microbiome characteristics found across the drains, suggesting climate and design related impacts (ongoing work – part 2).
Both incoming and irrigation water can be highly variable in quality despite originating from the same input water.
Different drains house different microbiome types, bacterial load and diversity and oomycetes load. Targeted and precise management of these hotpots will be the key.
We hope these data have showcased that the routine analysis of microbiomes is crucial and and that it is the key to improved microbiome management. We believe that farmers can now use these data feeds to create more stable microbial water quality conditions for the benefit of their crops via the targeted use of biostimulants, disinfectants, and other products.
Stay tuned for the launch of our horticulture services which will include the following benefits:
Weekly analysis and next business day reporting
Logistics arranged for you
Flexible sampling schemes
Fixed monthly cost
So What’s Next?
In part 2 of this work we’ll discuss more in-depth technical results on how we can relate these microbiome health characteristics to farm KPIs such as row-based production numbers and climate measurements.
About Tomato Masters
Tomato Masters is an innovative Flemish family business that is specialized in the hydroponic farming of tomatoes. The company owns 21 hectares of horticulture, spread across over four greenhouses. Sustainability is one of the key company values and therefore there is a strong effortto use water as efficiently as possible.
Curious about the microbiome health status of your greenhouses?
A Need for Rapid Logistics and Local Microbiome Analysis
Aquaculture has an enormous potential to ensure food security in a sustainable way. Animal health and water quality are therefore crucial aspects. Frequent and unpredictable disease outbreaks are detrimental to farm yields. By better controlling the microbiome based on robust and detailed data, the industry can take the necessary next step towards sustainable and reproducible farming.
KYTOS and I&V Bio are now joining forces to bring rapid sample logistics (I&V Bio) and local microbiome analysis (KYTOS) to the six most important shrimp producing countries (Thailand, Indonesia, India, Vietnam, Ecuador and Bangladesh). The partnership will install local and independent KYTOS labs to serve aquaculture farms and hatcheries with cutting-edge high throughput microbiome management tools.
The partnership combines I&V Bio’s long-standing expertise in serving aquaculture clients every single day of the year with KYTOS’s novel microbial fingerprinting technology that brings a holistic view on the aquaculture microbiome health. Vietnam has been selected as the first country where a central sample collection point, equipped with KYTOS’s automated microbiome analysis platform will be established. The other countries will follow swiftly.
Today, KYTOS technology can already characterize most of the microbial life (fungi, bacteria and algae) in the water, sediment and shrimp of a pond. Functional indicators, devised using machine learning, connect these data to farm actions such as biofloc formation, water maturation, and microalgae blooms. This ever-expanding list of indicators will help aquaculture farmers to shift the focus from mitigating diseases to an altogether improved management of the microbiome in their systems.
Enabling Precision Farming in Aquaculture
In the fields of water and animal treatments, KYTOS can now open the microbial black box in aquaculture systems by using so-called “microbial fingerprints”. This assessment provides farmers with microbial health insights that empowers them to take targeted actions to optimize animal health and production yields.
“The need for improved health management and disease prevention is as critical today as ever. Effective biosecurity will always be key to boost the commercial viability and environmental responsibility of the shrimp farming industry.“
Frank Indigne, CEO of I&V Bio
KYTOS uses big data and artificial intelligence to reduce aquaculture’s unpredictability by creating practical tools that help all stakeholders make informed management decisions to improve their farm performance.
“Shrimp aquaculture has largely been deprived of the benefits of new microbiome technologies and knowledge. At KYTOS, we’re on a mission to change that status quo. This partnership is an important step to bring our microbial fingerprinting platform to the farmers across the world. By working closely with all stakeholders in the industry we will create a unique opportunity to manage the microbiome together, for the benefit of the industry.“
Ruben Props, CEO of KYTOS
About I&V Bio
I&V Bio specializes in the daily and fresh delivery of its live feeds and solutions to the aquaculture industry. 8 years ago, the founders Frank Indigne and Luk Van Nieuwenhove started working on a revolutionary solution that has taken the Artemia-hatching burden away from shrimp hatcheries by creating Artemia hatching facilities. These facilities combine know-how, experience and new technologies to produce Artemia nauplii in a professional and industrial way. Currently, the I&V Bio Group has established Nauplii Centers in 6 countries: Thailand, India (3), Indonesia, Vietnam, Ecuador and Bangladesh.
All the I&V Bio Artemia Centers use a patented technology that allows them to offer pure undamaged Artemia nauplii (Instar1) free of the shell and other impurities, and free of Vibrio. The Artemia nauplii are disinfected, brought into suspended animation and de-watered until a consistent unique live-paste is achieved. The Artemia nauplii are ready to use and can be scooped from the tray directly into the shrimp tank. I&V Bio’s key to success is our guarantee to supply our customers with daily fresh, clean and disinfected vibrio-free products.
KYTOS is a microbiome technology company developing microbiome management solutions at the frontier of technological innovation. We have our origins in the Center for Microbial Ecology and Technology (CMET) at Ghent University, from which we build on decades of world-leading expertise in the management of microbial communities. We transform our partners into expert microbiome health stewards by empowering them with a unique blend of data science, technology, and microbial ecology insights.
We use functional cookies on our website to give you the best experience. By clicking “Accept All”, you consent to the use of all cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.